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Abstract

One of the central goals of ecology is to determine the mechanisms that enable coexistence

among species. Evidence is accruing that conspecific negative density dependence

(CNDD), the process by which plant seedlings are unable to survive in the area surrounding

adults of their same species, is a major contributor to tree species coexistence. However,

for CNDD to maintain community-level diversity, three conditions must be met. First, CNDD

must maintain diversity for the majority of the woody plant community (rather than merely

specific groups). Second, the pattern of repelled recruitment must increase in with plant

size. Third, CNDD should extend to the majority of plant life history strategies. These three

conditions are rarely tested simultaneously. In this study, we simultaneously test all three

conditions in a woody plant community in a North American temperate forest. We examined

whether understory and canopy woody species across height categories and dispersal syn-

dromes were overdispersed–a spatial pattern indicative of CNDD–using spatial point pattern

analysis across life history stages and strategies. We found that there was a strong signal of

overdispersal at the community level. Across the whole community, larger individuals were

more overdispersed than smaller individuals. The overdispersion of large individuals, how-

ever, was driven by canopy trees. By contrast, understory woody species were not overdis-

persed as adults. This finding indicates that the focus on trees for the vast majority of CNDD

studies may have biased the perception of the prevalence of CNDD as a dominant mecha-

nism that maintains community-level diversity when, according to our data, CNDD may be

restricted largely to trees.

Introduction

Conspecific negative density dependence (CNDD) is one of the most empirically supported

mechanisms for the maintenance of plant species diversity [1–4]. Conspecific negative density

dependence occurs when small individuals have relatively low rates of growth and survival

near adult members of their own species (conspecifics). This constraint on growth near
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conspecifics results in a distinct spatial pattern where adult conspecifics occur further away

from each other than would be expected by chance (overdispersion; [5]; but see [6,7]). Thus,

CNDD is predicted to result in stable species coexistence across the landscape because domi-

nant species cannot displace subordinate ones [8,9]. Evidence for CNDD has been reported in

a variety of ecosystems, including lakes, deserts, grasslands, marine ecosystems, and particu-

larly in temperate and tropical forests [1,2,7,10–16]. For forests, over the past ten years alone,

evidence for CNDD has been reported more than 30 times in 13 countries across five conti-

nents [17].

However, strong evidence for CNDD at the seedling level may not result in maintenance of

diversity at the forest level if NDD reduces clustering of seedlings but does not overcome the

initial clumped pattern of seedlings around adults (due to dispersal limitation) [18]. That is, if

CNDD does not result in a pattern of overdispersion, then it may fail to stably maintain species

diversity ([5,19,20]; but see [21,22]). For CNDD to be a likely mechanism maintaining com-

munity-level diversity in temperate forests, the following three conditions must be met. 1)

Individuals of the majority of the species in the community will be overdispersed because of

greater mortality near conspecific adults. If only a small proportion of the species are overdis-

persed, then CNDD may not theoretically benefit rare species enough to maintain diversity

[8,9]. 2) The degree of overdispersion will increase with ontogenetic (life-history) stage. That

is, the signal of CNDD should compound as individuals mature, and thus larger individuals of

any given species should be more overdispersed than smaller individuals (see Zhu et al. 2015

[18]). 3) CNDD will operate across life history strategies, including species that vary in growth

form and dispersal syndrome. If CNDD is the main mechanism driving diversity maintenance,

as suggested by previous studies (e.g., [3,17]) then it should operate on the plant growth forms

that contain the highest diversity. If these three conditions are met, then CNDD is likely to be

sufficiently strong to maintain community-level diversity.

Previous studies may have overestimated the importance of CNDD in forest ecosystems for

two reasons. First, the vast majority of studies that examined CNDD in vascular plant species

focused on growth and mortality at the seedling stage [1,2,14,16,23,24]. Dynamics at the seed-

to-seedling and seedling-to-sapling transitions do not necessarily translate to overdispersion

in the larger size classes [25] and may overestimate the role of CNDD [26]. Due to dispersal

limitation, most seeds arrive beneath the parent tree and thus most seedlings are also congre-

gated there. CNDD can maintain diversity only if seedling mortality beneath the conspecific is

sufficiently strong to overcome and reverse the initial clumped seedling distribution. Further-

more, CNDD must be high enough to exceed the null expectation of high seedling mortality

near the parent tree purely because there are more seedlings present [27]. If so, the negative

effects of growing near a conspecific adult should compound as individuals mature. As indi-

viduals grow, they compete more intensely with adults or acquire more pathogens or both,

and thus the level of overdispersion should increase with plant size.

Currently, the evidence for CNDD beyond the seed to seedling transition is mixed. For

example, a study by Yao et al. [25] found that CNDD decreased with increasing tree ontogeny

in a temperate forest. In fact, many species in both temperate and tropical forests do not have

an overdispersed distribution [19,28]. By contrast, Guo et al. [29] found that 75% of tree spe-

cies demonstrated CNDD as adults in subtropical forests (see also [30–32]).

Second, the vast majority of CNDD studies in forests focused only on trees, ignoring other

important plant growth forms (e.g., [5]). The selection of trees to test CNDD as a general

mechanism for the maintenance of diversity is particularly problematic in temperate forests,

where canopy tree species represent a relatively small fraction (~7%) of the total vascular plant

community [33]. Furthermore, canopy trees may be more prone to overdispersion due to their

capacity for long distance dispersal [34–36] and thus they may bias our understanding of the
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importance of CNDD for the diversity maintenance of the larger plant community. By con-

trast, understory plants (including understory woody species) represent a larger share of diver-

sity but have a lower capacity for long distance dispersal due to their relatively short stature

and position in forest understory. Furthermore, few understory plant species have dispersal

syndromes that favor long distance dispersal [33]. Many understory species are gravity dis-

persed while the majority of temperate canopy trees are wind dispersed. Thus, the strength of

CNDD may interact with plant dispersal syndrome.

Nonetheless, if CNDD is the primary mechanism that maintains community level diversity,

we would expect it to operate across life history stage and life history strategy. We addressed

these three core conditions for CNDD to be a general mechanism for the maintenance of plant

species diversity by evaluating the spatial patterns of a woody plant community across life his-

tory strategies (shrubs, understory trees, mid-story trees, canopy trees, and lianas) and ontoge-

netic stages (seedling, sapling, and adult) in the field in a temperate forest in western

Pennsylvania, USA. We tested three specific hypotheses: 1) Woody plant diversity in temperate

forests is maintained by CNDD, and thus we predict that the majority of plant species will be

overdispersed. 2) The effects of CNDD compound as plants grow, and thus overdispersion will

increase with plant size. 3) CNDD operates independently of growth form and dispersal syn-

drome, and thus we predict that the pattern of overdispersion will be found in the majority of

the species of all plant groups. We tested these hypotheses by examining the degree of overdis-

persion in a woody plant community, which included a range of plant life-history stages (i.e.,
sizes) and life-history strategies (i.e., growth form and dispersal syndrome).

Materials and methods

Study site

We conducted this study at Powdermill Nature Reserve with permission from the Carnegie

Museum of Natural History. Powdermill Nature Reserve is an 890-hectare reserve located in

the Allegheny plateau at the base of the Appalachian Mountains in southwestern Pennsylvania,

USA (Westmoreland County; 40o09’ N, 79o16’ W). This region receives ~1100 mm of precipi-

tation per year and is characterized by mixed mesophytic vegetation that is dominated by

maples (Acer spp.), tuliptree (Liriodendron tulipifera), and oaks (Quercus spp.). Elevation at

Powdermill Nature Reserve ranges from 392 to 647 m above sea level. Powdermill Nature

Reserve contains a matrix of vegetation types consisting primarily of secondary deciduous for-

est but with several areas of maintained fields and managed lands. Last known logging

occurred in this region in the 19th century, and land was primarily used for agriculture into the

early 20th century (see [37] for more detailed site description).

Plot establishment and plant census

In May and June of 2014, we established sixteen 10-m diameter circular plots in the>90-year-

old secondary temperate deciduous forests at Powdermill Nature Reserve. We chose the 10-m

diameter spatial grain because this size was thought to be a suitable size to test for spatial pat-

terns associated with NDD in a Malaysian forest ([38]; see also [19,28]). We avoided canopy

gaps for the placement of each plot, and each plot had>80% canopy cover. We ensured that

the plots were not within 10 m of a waterway, that soil cover was not predominantly rocks, and

that plots were at least 20 m from any edge. We used a Trimble GeoExplorer 6000XH to mea-

sure the precise location (up to 10 cm accuracy) of all woody plant individuals >10 cm height

in each plot (Trimble Navigation Limited, Westminster, CO). For each individual, we mea-

sured height and basal diameter, and we identified them to species.
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To examine how overdispersion changes with plant size, we divided individuals into four

height classes (<0.5 m, 0.5–1 m, 1–5 m, and 5–10 m). We use these height classes as a proxy

for both relative age (assuming that plants get taller as they get older) and position within the

forest. Individuals that are shorter are less likely to be able to disperse seeds farther away than

individuals that are taller even if they belong to the same species and have the same dispersal

syndrome. To understand how overdispersion interacts with life-history strategy, we classified

each species as either canopy or understory (growth form), and as either bird, wind, self, or

other animal dispersed (dispersal mechanism) based on species descriptions in the Flora of

North America [39].

Data analysis

We performed all data analysis in R statistical computing software [40]. To measure plant spa-

tial distribution (the degree to which plants are clustered or overdispersed), we calculated Rip-

ley’s K in the package “spatstat” using Ripley’s translational border correction at each plot for

each species and then, for ease of interpretation, converted K to Besag’s L [41–44]. Several

studies have demonstrated that spatial point pattern analysis is capable of detecting spatial pat-

terns that can be attributed to mechanistic processes (e.g. [5,45]). To eliminate point patterns

based on low replication, we removed species at any plot with fewer than five individuals as

point patterns with fewer than 5 points in our data had significantly larger variance than those

with>5 points. We then calculated a pooled L for each comparison (by species, by growth

form, by growth form/plant size, or by growth form/dispersal mechanism) by weighting the

individual L estimates by the number of points in a given L-function (methods follow [46]).

For the growth form by dispersal mechanism interaction, we limited the final analysis to bird

and wind dispersed species because these two groups had sufficient replication for robust com-

parisons between canopy and understory plants.

We bootstrapped these estimates 999 times to create 95% confidence intervals. We then cal-

culated the predicted L for complete spatial random to compare our spatial patterns to com-

plete spatial random. Data manipulation of input to and output from point pattern analysis

was done using a combination of the “abind”, “gridExtra”, and “reshape” packages [47–49].

We constructed all figures in the package “ggplot2” [50].

To more easily interpret the figures, we corrected our measures of L with the distance at

which each measure of L was calculated (L(d)-d). Besag’s L is a measure of spatial aggregation,

and when L(d)-d is positive, a greater proportion of neighbors are observed within distance d

of focal individuals than predicted by a complete spatial random pattern. When L(d)-d is nega-

tive, a smaller proportion of neighbors are observed within distance d of focal individuals than

predicted by a complete spatial random pattern (Fig 1, [51]). We considered plants to be over-

dispersed based on their point pattern when the linear regression slope of L(d)-d was signifi-

cant and positive (using the command “lm” in R, S1 and S2 Tables) with increasing distance

(d) [46]. This designation implies that more individuals are found far away from an individual

of a given species than near an individual of that species. We considered plants to be clustered

based on their point pattern when the linear regression slope of L(d)-d was significant and

negative with increasing distance. These designations differ from “pure overdispersion” (i.e.

regularity or inhibition), which would begin with a significantly negative L(d)-d that indicates

fewer individuals close to the parent than would be expected by chance (Fig 1B and 1C,

[44,46,52]). However, natural dispersal typically results in more conspecific seeds and seed-

lings close to adults than predicted by complete spatial random, and thus we did not expect to

find a significant negative L(d)-d of seedlings close to the parent [53]. Therefore, we accounted

for dispersal limitation by focusing on overdispersion as having a positive slope with regards
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Fig 1. Conceptual representation of L(d)-d and representative spatial patterns. a.) Conceptual diagram of interpretations of different

quadrants of spatial point pattern space for Besag’s L after it has been centered by distance. b.) Hypothetical distribution where individuals
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to distance (d), which indicates a significant increase in individuals with distance from the

adult, at the community scale. However, CNDD should result in increasing overdispersion

with plant size as the effects of CNDD compound with time (as the plant matures). Thus, we

might expect a spatial signature of “pure overdispersion” in larger size classes if CNDD is capa-

ble of overcoming initial dispersal patterns and thus stably maintaining coexistence.

We considered any point pattern to be significantly different from complete spatial random

if a mixed effect linear model including all factors of the L(d)-d and the distance was signifi-

cant (calculated using the command “lmer” in package “lme4” with plot as a random effect

and using the package “lmerTest” to calculate p-values; Table 1; [54,55]). Further, we include

the results of the same models but with a more conservative estimate of degrees of freedom in

S2 Table. If the total model was considered significant, we did not consider the point pattern

to be significantly different from complete spatial random at any distance where the boot-

strapped 95% confidence intervals of L(d)-d overlap with complete spatial random. We con-

sidered any two point patterns to be significantly different from each other if their

bootstrapped 95% confidence intervals did not overlap at a given distance.

are perfectly overdispersed, there are more individuals than expected from complete spatial random but only at larger distances, i.e. those

individuals are farther apart. c.) Hypothetical distribution where individuals are perfectly underdispersed. There are more individuals than

expected from complete spatial random but only at shorter distances, i.e. those individuals are close together.

https://doi.org/10.1371/journal.pone.0245639.g001

Table 1. Results of mixed effects linear model to calculate L statistic significance at Powdermill Nature Reserve in Southwestern Pennsylvania for all comparisons

of all individuals>10 cm height.

Model dF T Stat P value Figure

All individuals 2228 19.37 <0.0001 1a

All individuals, <0.5 781 -4.477 0.6689 1b

All individuals, 0.5–1 889 7.83 <0.0001 1b

All individuals, 1–5 797 8.5828 <0.0001 1b

All individuals, >5 358 -14.97 <0.0001 1b

Understory 1071 10.191 <0.0001 2a

Canopy 1059 5.796 <0.0001 2a

Canopy, <0.5 m tall 380 -7.14 <0.0001 2b

Canopy, 0.5–1 m tall 478 8.67 <0.0001 2b

Canopy, 1–5 m tall 463 9.14 <0.0001 2b

Canopy, >5 m tall 186 -10.71 <0.0001 2b

Understory, <0.5 m tall 397 2.045 0.0415 2c

Understory, 0.5–1 m tall 407 0.3348 0.7379 2c

Understory, 1–5 m tall 381 1.038 0.2998 2c

All individuals, bird dispersed 1159 2.86 0.0042 3a

All individuals, animal dispersed 200 -6.806 <0.0001 3a

All individuals, wind dispersed 803 3.404 <0.0001 3a

Overstory, wind dispersed 601 3.903 <0.0001 3b

Overstory, bird dispersed 250 5.482 <0.0001 3b

Understory, wind dispersed 199 -8.895 <0.0001 3b

Understory, bird dispersed 906 -3.533 0.0004 3b

To calculate significant differences from complete spatial random we used a mixed effects linear model with plot as a random effect to control for between plot

differences due to environmental heterogeneity between plots. We report model degrees of freedom based on the number of L estimates (calculated every 10 cm per

point pattern per plot). We report any pooled point pattern as overdispersed if it has a significantly positive slope and any pooled point pattern as clustered if it has a

significantly negative slope.

https://doi.org/10.1371/journal.pone.0245639.t001
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Results

At the community level, all woody plants combined were significantly overdispersed (Fig 2A).

The largest individuals (>5 m tall) had a significantly lower overdispersion (L(d)-d) at inter-

mediate distances (2-5m), than the two middle height size classes (1m – 5m and 0.5–1 m);

however, L(d)–d did not differ significantly among the larger size classes at distances greater

than 5 m (Fig 2B). By contrast, the smallest individuals (< 0.5 m) had significantly lower over-

dispersion than intermediate height individuals (0.5-1m and 1–5 m tall) for all distances

greater than 2m (Fig 2B), and significantly lower dispersion than individuals in all of the larger

height categories for distances greater than 5m. Thus, all but the smallest size classes were over-

dispersed at longer distances from the adult tree, indicating that, at the community-level,

NDD was strong enough to overcome the initial clumped distribution of seedlings as the plants

grew.

Both canopy trees and understory plants were significantly overdispersed; canopy trees

were more overdispersed (significantly higher L(d)-d) at distances greater than 3 m (Fig 2A).

The differences in overdispersion between canopy and understory plants become more pro-

nounced with plant life history stage (i.e., plant size). Canopy trees did not differ significantly

from complete spatial random when they were small and young, but became significantly

overdispersed when they were larger (Fig 3B), which is consistent with CNDD. Understory

plants displayed the opposite pattern: they were overdispersed when small, but larger individu-

als were indistinguishable from complete spatial random (Fig 3C).

All of the four dispersal mechanisms that we examined, wind, bird, and self-dispersed spe-

cies were overdispersed and statistically indistinguishable from each other. Species dispersed

by animals other than birds (including secondary dispersal by squirrels) were all significantly

less overdispersed than the other three dispersal types (Fig 4A). Dispersal syndrome for bird

and wind dispersed species did not explain the differences in spatial pattern between canopy

trees and understory plants; canopy trees were always more overdispersed than understory

plants regardless of dispersal mechanism (Fig 4B), suggesting that the height of canopy trees is

the most important factor in dispersal distance.

Discussion

We found that canopy trees were overdispersed and the strength of overdispersion increased

with tree size–two critical conditions for CNDD to be a general mechanism for the mainte-

nance of woody plant species diversity. Increasing overdispersion with increasing plant size is

predicted by CNDD because plants should survive and grow best away from conspecific adults

due to intraspecific competition [56] or the negative effects of natural enemies [8,9,57,58]. Our

findings are consistent with a growing number of studies that have reported that CNDD is a

viable mechanism to maintain canopy tree diversity in temperate and tropical forests (e.g.,

[1,2,7,14,32,38]). Thus, our findings support CNDD as a mechanism for the maintenance of

canopy tree species diversity. However, we cannot rule out the possibility that trees may be

more likely to be overdispersed with size simply because the larger (and presumably older) the

tree the greater the probability of mortality for the parent (which is often nearby) [59].

For woody understory plants, our spatial patterns did not meet the criteria for CNDD to

maintain species diversity. Understory species were overdispersed only in the smallest size

classes, and overdispersion did not increase with plant size, which we use as a proxy for life his-

tory stage. If CNDD is operating in understory plants in these forests, it does not appear to be

sufficiently strong to overcome the initial clumped dispersal pattern of seedlings, and therefore

it did not result in overdispersion. Similar conclusions that CNDD may not be a general mech-

anism for the maintenance of non-tree plant diversity were reported for tropical forests. For
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Fig 2. Pooled Besag’s L statistic across distance from spatial point pattern analysis for the full community of

woody plants>10 cm in height at Powdermill Nature Reserve in Southwestern Pennsylvania. a.) The community

of woody plants (all species, n = 62 point patterns) was significantly overdispersed regardless of dispersal mechanism.

However, the L(d)-d for the community remains positive across all distances indicating that some individuals occur

close to members of their own species. b.) Individuals that were<0.5 m tall were the least overdispersed (n = 25 point

patterns). Individuals that were intermediate in height (0.5m to 5 m tall) were significantly more overdispersed than

smaller individuals, though not significantly more or less overdispersed than the largest individuals (n0.5-1m = 26 point

patterns, n1-5m = 27 point patterns). The largest individuals (> 5m tall, n = 13 point patterns) were not significantly

more overdispersed than individuals that were 0.5m to 5m tall; however, the drop in the line below complete spatial
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example, Ledo & Schnitzer [5] found that lianas, which comprised ~35% of the woody species

diversity in a Panamanian tropical forest [60,61], were underdispersed (clustered) rather than

overdispersed. Thus, Ledo & Schnitzer [5] concluded that, while there was evidence for

CNDD for canopy trees, there was little evidence for CNDD for lianas. Similarly, in a Carib-

bean tropical forest, DeWalt and colleagues [36] found that non-canopy tree woody seedlings

(lianas and shrubs) were less likely to suffer negative density dependent mortality than canopy

trees. In tropical forests, however, trees commonly represent 65% or more of the woody plant

species diversity (e.g., [60,61]), and thus CNDD is still likely a powerful diversity maintenance

mechanism. By contrast, CNDD may fail to maintain the majority of species diversity in tem-

perate forests where canopy trees represent a small minority of species [62,63].

In temperate forests, CNDD likely does not occur in isolation. Rather, CNDD and other

mechanisms like facilitation, niche specialization, and dispersal limitation likely interact to

maintain diversity in these forests. CNDD may be the most important mechanism for the

maintenance of tree species diversity even though these other mechanisms are likely to be

occurring simultaneously. But for other plant groups, these other mechanisms like facilitation,

niche specialization, and dispersal limitation may be more important relative to CNDD. For

example, Ledo and Schnitzer [5], found that clumped spatial distributions may be due to niche

specialization in lianas, while trees demonstrated overdispersion indicating that CNDD may

be more powerful. Similarly, the relative importance of these different mechanisms may

change as plants grow. For example, Yao et al. [25] found that CNDD was important for indi-

viduals when they were young and small but that topographic and edaphic factors increased in

importance with increasing plant age. Similarly, for tree seedlings invading into a grassland,

Wright et al. [64] found that smaller tree seedlings benefited from facilitation in high diversity

contexts while larger tree seedlings experienced strong competition.

At Powdermill Nature Reserve, a similar scenario where overall diversity is maintained by

several mechanisms which simultaneously support diversity but also tradeoff in importance

depending on the age/size of individuals and their abiotic context. Trees (and especially the

largest trees) may be maintained largely by CNDD; whereas, understory plants may be influ-

enced by a number of different mechanisms. There is evidence that CNDD is a weak mecha-

nism for the maintenance of understory plant diversity, since overdispersion is present when

understory plants are small (Fig 2C). However, the lack of overdispersion in larger understory

plants indicates that a mechanism (or mechanisms) other than CNDD is a stronger driver of

understory plant diversity. Short distance dispersal is often adaptive because site conditions

are likely to be the same in the area immediately surrounding a parent plant [65]. Because dis-

persal syndromes that favor shorter distance dispersal are more common in the understory,

mechanisms like niche differentiation that rely on adaptation to specific abiotic factors as

found by both Ledo and Schnitzer [5] and Yao et al. [25] may be more important for these

understory species.

Canopy trees may be significantly more overdispersed than understory species simply

because being tall enables longer distance dispersal. We found higher overdispersion of canopy

trees than for understory plants regardless of dispersal mechanism (Fig 4B). That is, tall species

were more likely to experience overdispersion whether they were bird or wind dispersed even

though bird dispersal may enable more (generally rare) events of very long-distance dispersal

random indicates that they had less clumping over small distances. Grey shaded regions represent 95% confidence

intervals, darker grey regions represent overlapping confidence intervals. Overlap in 95% confidence intervals

indicates that spatial point patterns were either not significantly different from each other (when two spatial point

patterns overlap) or that a spatial point pattern did not differ from complete spatial random (when overlapping with

the black dotted line).

https://doi.org/10.1371/journal.pone.0245639.g002
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[66,67]. Understory plants tend to have universally smaller dispersal kernels regardless of dis-

persal mechanism because of their smaller stature [53]. Small stature results in fewer seeds dis-

persed at longer distances—even for bird-dispersed seeds (Fig 4B). The inability to move seeds

far away from the parent tree may force understory plants to be better defended against soil

pathogens, which appear to be strong agents of CNDD [1,58,68–70]. Furthermore, negative

feedback from soil pathogens may be inversely related to light availability (Smith & Reynolds

2015, Jiang et al. 2020) [71,72]. Many understory plants are naturally well defended because of

the importance of preserving plant tissue in a low-light environment [73,74]; thus, understory

plants may be predisposed to developing greater defenses to pathogens rather than increasing

dispersal abilities.

Differences in the level of overdispersion between canopy species and understory species

did not appear to be due to the spatial scale of study in spite of our relatively small plot size. If

spatial scale had biased our results, we would have expected the spatial point pattern analysis

to show little evidence of overdispersion for large canopy trees, but rather a signature indistin-

guishable from complete spatial random. Furthermore, Zhu et al. [30] demonstrated that

when NDD is present it is most likely to be present at the 0–5 m scale and peaks at 5 m (see

also [29]). Our results showed a clear spatial signature of overdispersion for our largest indi-

viduals. Thus, it seems unlikely that our findings were caused by differences in plant scale. Fur-

thermore, Bagchi & Illian [46] demonstrate that replicated point pattern analysis is

significantly more robust to problems of small scale than traditional point pattern analysis.

Conclusions

The intense focus on canopy trees, and in particular on tree seedlings, may bias the current

understanding of diversity maintenance in forest ecosystems [25,26]. If we had restricted our

sampling to only the smallest understory individuals, we would have concluded that CNDD

maintains woody understory plant diversity but not canopy tree diversity. However, examin-

ing larger individuals indicated that adult canopy trees became overdispersed as they matured,

but that understory plants did not. Zhu and colleagues [18], Detto and colleagues [26] and Yao

and colleagues [25] all emphasized similar caution in drawing large-scale conclusions from

studies of seedling dynamics for three reasons. First, patterns of seedling mortality often have

little effect on broader community and demographic patterns [18]. Second, NDD tends to

decrease with ontogeny rather than increase [25]. Finally, studies of NDD at the recruitment

level may overestimate NDD due to regression dilution ([26]; but see [4]).

To fully understand the maintenance of plant species diversity, it is necessary to examine

spatial patterns across plant sizes, as well as across plant groups that vary in life history strate-

gies. Spatial patterns may be even more complex when considering species that vary more

broadly in their life history strategies, such as herbaceous species, which comprise the majority

Fig 3. Pooled Besag’s L statistic across distance from spatial point pattern analysis for woody plants>10 cm in

height at Powdermill Nature Reserve in Southwestern Pennsylvania separated by growth form. Black dotted line

throughout represents the complete spatial random prediction. a.) Canopy (n = 29 point patterns) and understory

plants (n = 33 point patterns) were both significantly overdispersed, indicative of negative density dependence. Canopy

plants were significantly more overdispersed than understory plants. b.) Canopy plants were more overdispersed with

increasing life-history stage in accordance with predictions for negative density dependence (n<0.5 = 14 point patterns,

n0.5–1 = 48 point patterns, n1-5 = 32 point patterns, n>5 = 15 point patterns). c.) Understory plants were not more

overdispersed with life-history stage (n<0.5 = 21 point patterns, n0.5–1 = 22 point patterns, n1-5 = 20 point patterns).

Grey shaded regions represent 95% confidence intervals, darker grey regions represent overlapping confidence

intervals. When confidence intervals overlap, we consider two point patterns to be the same in the overlapping region.

We consider point patterns where the confidence intervals overlap with the black dotted line to not be significantly

different from complete spatial random in that region.

https://doi.org/10.1371/journal.pone.0245639.g003
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Fig 4. Pooled Besag’s L statistic across distance from spatial point pattern analysis of the woody plant community stratified by

dispersal mechanism and plant type at Powdermill Nature Reserve in southwestern Pennsylvania. a.) Wind dispersed(n = 16), bird

dispersed (n = 23), and self dispersed(n = 2) species were significantly more overdispersed than species dispersed by animals other than birds

(nanimal = 6). b.) Canopy plants were significantly more overdispersed than understory plants regardless of dispersal mechanism(ncanopy-bird

= 5, ncanopy-wind = 12, nunderstory-bird = 18, nunderstory-wind = 5). Bird dispersal was emphasized here; however, plants did not differ significantly
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of plant diversity in temperate deciduous forests [63] and are largely neglected with respect to

their diversity maintenance [17]. Nevertheless, even by simply dividing the woody plant com-

munity into canopy trees and woody understory plants, we demonstrate that CNDD, which

appears to maintain canopy tree diversity, may not be strong enough to overcome dispersal

limitation and maintain understory woody plant diversity in this temperate forest.
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